Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Lancet Oncol ; 23(2): 270-278, 2022 02.
Article in English | MEDLINE | ID: covidwho-2115061

ABSTRACT

BACKGROUND: Endoscopic surveillance is recommended for patients with Barrett's oesophagus because, although the progression risk is low, endoscopic intervention is highly effective for high-grade dysplasia and cancer. However, repeated endoscopy has associated harms and access has been limited during the COVID-19 pandemic. We aimed to evaluate the role of a non-endoscopic device (Cytosponge) coupled with laboratory biomarkers and clinical factors to prioritise endoscopy for Barrett's oesophagus. METHODS: We first conducted a retrospective, multicentre, cross-sectional study in patients older than 18 years who were having endoscopic surveillance for Barrett's oesophagus (with intestinal metaplasia confirmed by TFF3 and a minimum Barrett's segment length of 1 cm [circumferential or tongues by the Prague C and M criteria]). All patients had received the Cytosponge and confirmatory endoscopy during the BEST2 (ISRCTN12730505) and BEST3 (ISRCTN68382401) clinical trials, from July 7, 2011, to April 1, 2019 (UK Clinical Research Network Study Portfolio 9461). Participants were divided into training (n=557) and validation (n=334) cohorts to identify optimal risk groups. The biomarkers evaluated were overexpression of p53, cellular atypia, and 17 clinical demographic variables. Endoscopic biopsy diagnosis of high-grade dysplasia or cancer was the primary endpoint. Clinical feasibility of a decision tree for Cytosponge triage was evaluated in a real-world prospective cohort from Aug 27, 2020 (DELTA; ISRCTN91655550; n=223), in response to COVID-19 and the need to provide an alternative to endoscopic surveillance. FINDINGS: The prevalence of high-grade dysplasia or cancer determined by the current gold standard of endoscopic biopsy was 17% (92 of 557 patients) in the training cohort and 10% (35 of 344) in the validation cohort. From the new biomarker analysis, three risk groups were identified: high risk, defined as atypia or p53 overexpression or both on Cytosponge; moderate risk, defined by the presence of a clinical risk factor (age, sex, and segment length); and low risk, defined as Cytosponge-negative and no clinical risk factors. The risk of high-grade dysplasia or intramucosal cancer in the high-risk group was 52% (68 of 132 patients) in the training cohort and 41% (31 of 75) in the validation cohort, compared with 2% (five of 210) and 1% (two of 185) in the low-risk group, respectively. In the real-world setting, Cytosponge results prospectively identified 39 (17%) of 223 patients as high risk (atypia or p53 overexpression, or both) requiring endoscopy, among whom the positive predictive value was 31% (12 of 39 patients) for high-grade dysplasia or intramucosal cancer and 44% (17 of 39) for any grade of dysplasia. INTERPRETATION: Cytosponge atypia, p53 overexpression, and clinical risk factors (age, sex, and segment length) could be used to prioritise patients for endoscopy. Further investigation could validate their use in clinical practice and lead to a substantial reduction in endoscopy procedures compared with current surveillance pathways. FUNDING: Medical Research Council, Cancer Research UK, Innovate UK.


Subject(s)
Adenocarcinoma/pathology , Barrett Esophagus/pathology , COVID-19 , Esophageal Neoplasms/pathology , Patient Selection , Watchful Waiting/methods , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/metabolism , Aged , Barrett Esophagus/diagnostic imaging , Barrett Esophagus/metabolism , Barrett Esophagus/therapy , Biomarkers/metabolism , COVID-19/prevention & control , Clinical Decision-Making , Clinical Trials as Topic , Cross-Sectional Studies , Decision Trees , Disease Progression , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/metabolism , Esophagoscopy , Feasibility Studies , Female , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2 , Trefoil Factor-3/metabolism , Tumor Suppressor Protein p53/metabolism
2.
Dig Dis Sci ; 67(6): 1937-1947, 2022 06.
Article in English | MEDLINE | ID: covidwho-1877869

ABSTRACT

Diagnostic unsedated transnasal endoscopy (uTNE) has been proven to be a safe and well-tolerated procedure. Although its utilization in the United Kingdom (UK) is increasing, it is currently available in only a few centers. Through consideration of recent studies, we aimed to perform an updated review of the technological advances in uTNE, consider their impact on diagnostic accuracy, and to determine the role of uTNE in the COVID-19 era. Current literature has shown that the diagnostic accuracy of uTNE for identification of esophageal pathology is equivalent to conventional esophagogastroduodenoscopy (cEGD). Concerns regarding suction and biopsy size have been addressed by the introduction of TNE scopes with working channels of 2.4 mm. Advances in imaging have improved detection of early gastric cancers. The procedure is associated with less cardiac stress and reduced aerosol production; when combined with no need for sedation and improved rates of patient turnover, uTNE is an efficient and safe alternative to cEGD in the COVID-19 era. We conclude that advances in technology have improved the diagnostic accuracy of uTNE to the point where it could be considered the first line diagnostic endoscopic investigation in the majority of patients. It could also play a central role in the recovery of diagnostic endoscopic services during the COVID-19 pandemic.


Subject(s)
Barrett Esophagus , COVID-19 , Barrett Esophagus/pathology , Endoscopy, Digestive System/adverse effects , Endoscopy, Digestive System/methods , Endoscopy, Gastrointestinal/adverse effects , Humans , Pandemics/prevention & control
3.
Acta Biomater ; 146: 211-221, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1813996

ABSTRACT

Accurate and rapid point-of-care tissue and microbiome sampling is critical for early detection of cancers and infectious diseases and often result in effective early intervention and prevention of disease spread. In particular, the low prevalence of Barrett's and gastric premalignancy in the Western world makes population-based endoscopic screening unfeasible and cost-ineffective. Herein, we report a method that may be useful for prescreening the general population in a minimally invasive way using a swallowable, re-expandable, ultra-absorbable, and retrievable nanofiber cuboid and sphere produced by electrospinning, gas-foaming, coating, and crosslinking. The water absorption capacity of the cuboid- and sphere-shaped nanofiber objects is shown ∼6000% and ∼2000% of their dry mass. In contrast, unexpanded semicircular and square nanofiber membranes showed <500% of their dry mass. Moreover, the swallowable sphere and cuboid were able to collect and release more bacteria, viruses, and cells/tissues from solutions as compared with unexpanded scaffolds. In addition to that, an expanded sphere shows higher cell collection capacity from the esophagus inner wall as compared with the unexpanded nanofiber membrane. Taken together, the nanofiber capsules developed in this study could provide a minimally invasive method of collecting biological samples from the duodenal, gastric, esophagus, and oropharyngeal sites, potentially leading to timely and accurate diagnosis of many diseases. STATEMENT OF SIGNIFICANCE: Recently, minimally invasive technologies have gained much attention in tissue engineering and disease diagnosis. In this study, we engineered a swallowable and retrievable electrospun nanofiber capsule serving as collection device to collect specimens from internal organs in a minimally invasive manner. The sample collection device could be an alternative endoscopy to collect the samples from internal organs like jejunum, stomach, esophagus, and oropharynx without any sedation. The newly engineered nanofiber capsule could be used to collect, bacteria, virus, fluids, and cells from the abovementioned internal organs. In addition, the biocompatible and biodegradable nanofiber capsule on a string could exhibit a great sample collection capacity for the primary screening of Barret Esophagus, acid reflux, SARS-COVID-19, Helicobacter pylori, and gastric cancer.


Subject(s)
Barrett Esophagus , COVID-19 , Nanofibers , Barrett Esophagus/diagnosis , Barrett Esophagus/microbiology , Barrett Esophagus/pathology , Capsules , Humans
SELECTION OF CITATIONS
SEARCH DETAIL